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The obstruction set for graphs with knotless embeddings is not known, but a
recent paper of Goldberg, Mattman, and Naimi indicates that it is quite large.
Almost all known obstructions fall into four triangle-Y families and they ask if
there is an efficient way of finding or estimating the size of such graph families.
Inspired by this question, we investigate the family size for complete multipartite
graphs. Aside from three families that appear to grow exponentially, these families
stabilize: after a certain point, increasing the number of vertices in a fixed part
does not change family size.

1. Introduction

This paper is inspired by the question of [Goldberg et al. 2014]:

Question [Goldberg et al. 2014, Question 4]. Given an arbitrary graph, is there an
efficient way of finding, or at least estimating, how many cousins it has?

We show that, in the case of a complete multipartite graph, there is quite a lot
one can say about its family size.

For us, graphs are finite, undirected, and simple. We say that H is a minor of G if
H is obtained by contracting edges in a subgraph of G. The graph minor theorem of
[Robertson and Seymour 2004], perhaps the most important result in graph theory,
says that any property of graphs that is inherited by minors has a finite obstruction
set. Here, we are primarily interested in topological properties of graphs.

For example, the obstruction set for graph planarity (embedding a graph in the
plane, or the sphere, with no crossings) contains only the complete multipartite
graphs K5 and K3,3. In general, while there will be a finite set of obstructions for
embeddings into any surface, the obstruction set may be quite large. For example,
it is known that for the torus there are at least 17, 523 obstructions (see [Myrvold
and Woodcock 2018]) and it is expected that the number grows quickly with genus
after that.
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Figure 1. The rY and Yr moves.

Robertson, Seymour, and Thomas [Robertson et al. 1995] proved that the obstruc-
tion set for graphs with a linkless embedding (an embedding in R3 that contains no
nontrivial link) consists of the seven graphs obtained from K6 by triangle-Y and
Y-triangle moves; see Figure 1. In addition to K6, this set of seven graphs, called
the Petersen family, also contains K1,3,3 and the Petersen graph. It was shown
in [Conway and Gordon 1983] that K7 is an obstruction for knotless embedding
(embeddings in R3 with no nontrivial knot). Although the obstruction set for graphs
with knotless embeddings is not known, recent work of Goldberg, Mattman, and
Naimi [Goldberg et al. 2014] indicates it is quite large and that completing the set
may be beyond current theory.

While the graph minor theorem guarantees finite obstruction sets, we often have
no way of bounding, or even estimating that finite number. In the case of linkless
embedding, the obstructions belong to a single family related by triangle-Y and
Y-triangle moves. Similarly, for knotless embedding, all but three of the known
obstructions fall into one of four families [Flapan et al. 2017]. Bounding the
complete set of knotted obstructions is beyond us for the moment, but a method for
estimating the size of graph families is a positive step in that direction.

As in Figure 1, a triangle-Y or rY move deletes the edges of a 3-cycle abc in
graph G and adds a new vertex v and the three edges av, bv, cv to create a new
graph H. We call the inverse operation, from H to G, a Y-triangle or Yr move. Let
#E(G) be the number of edges in the graph G, called the graph’s size, and note that
these moves do not change graph size: #E(G) = #E(H). If a graph H is obtained
from G by a sequence of zero or more Yr and rY moves, we say H and G are
cousins. The set of cousins of a graph G is known as G’s family, denoted by F(G).
Every graph in F(G) has the same size as G. In the current paper we seek to
estimate |F(G)|, the number of graphs in F(G), which we will call G’s family size.

Since the rY and Yr moves preserve important topological properties of a
graph, these families are significant in the study of spatial graphs, or embeddings of
graphs in R3. For example, Yr preserves planarity, and more generally, preserves
n-apex provided the vertex v is not part of an apex set; see [Mattman and Pierce
2017]. As in that paper, we say that a graph is n-apex if it can be made planar by
deletion of n or fewer vertices. Sachs [1984] observed that Yr preserves linkless
embeddings, and essentially the same argument shows that it also preserves knotless
embeddings.
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As mentioned above, linkless embedding is characterized by the family of
the Petersen graph. Sachs [1984] saw that the graphs in the Petersen family are
obstructions for linkless embedding and conjectured that those seven constituted
a complete list of obstructions; this was confirmed in [Robertson et al. 1995]. In
addition to the Petersen graph, the complete graph K6 and the complete tripartite
graph K1,3,3 are in this family, so we can denote it as F(K6) or F(K1,3,3). Since
F(K6) is closed under rY moves, that move also preserves linkless embeddings;
see [Flapan and Naimi 2008].

On the other hand, Flapan and Naimi [2008] pointed out that, in general, rY does
not preserve knotless embeddings. Nonetheless, almost all of the 264 known ob-
structions belong to the four families F(K7), F(K1,1,3,3), F(E9+e), and F(G9,28);
see [Flapan et al. 2017].

In [Goldberg et al. 2014], the authors note that family size shows considerable
variation. For example, they contrast G14,25, a graph of order 14 and size 25, whose
family size is at least several hundreds of thousands, with an obstruction discovered
by Foisy, of order 13 and size 30, whose family size is 1. In the current paper,
we investigate what can be said if we restrict attention to the families of complete
multipartite graphs. We have already seen how the families of K6, K7, and K1,1,3,3
are important in characterizing linkless and knotless embeddings. These ideas are
generalized in [Mattman and Pierce 2017], where the authors present evidence that
the graphs in F(Kn) and F(K1n,32) are obstructions for the n-apex property. Here,
K1n,32 denotes the complete multipartite graph with two parts of three vertices each
and a further n parts, each of a single vertex.

In summary, the families of complete multipartite graphs have already shown
their utility in the study of spatial graphs. Moreover, since any graph can be
made complete multipartite through the addition of edges, information about the
family size of complete multipartite graphs can be parlayed into estimates for other
graphs. For example, we’ve mentioned E9+e and G9,28 as important obstructions for
knotless embedding. The family size of E9+e is 110, which is similar to the size 71
for the graph K33 that has five more edges. For G9,28, whose family size is 1609,
we can compare with K1,24 , which has four extra edges and family size 1887.

2. Results

Our main observation is that the sizes of families of complete multipartite graphs
stabilize as the number of vertices in any fixed part increases.

Theorem 2.1. Let 1  a1  · · ·  an and e = #E(Ka1,...,an�1). If a1 +· · ·+an�1 > 6
and an � e, then

|F(Ka1,...,an )| = |F(Ka1,...,an�1,e)|.
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n f (n) actual

8 31.2 32
9 139.7 163

10 1701.3 1681
11 56,338.7 56,461
12 5,071,450 5,002,315

Table 1. Estimates for the family size of Kn versus actual.

For tripartite graphs, we verify stabilization even when the sum of the parts does
not exceed 6, with one exception.

Theorem 2.2. Let 1  a  b  c, (a, b) 6= (1, 2), and c � d = max(4, ab). Then
|F(Ka,b,c)| = |F(Ka,b,d)|.

For bipartite graphs, the family size is generally 1 and it is also relatively small
for K1,b,c.

Theorem 2.3. For Kx,y , if x 6= 3 and y 6= 3, then |F(Kx,y)| = 1.

Theorem 2.4. Let 6  b  c. Then |F(K1,b,c)| = 1 + b.

For K2,b,c we also have a lower bound in terms of partitions, which closely follows
the observed growth of |F(K2,b,c)|. Let P(x, y, z) denote the set of partitions of z
into two parts, the first bounded by x and the second by y:

P(x, y, z) = {(m, n) : 0  m  x, 0  n  y, m + n = z}.
Define g(b, c) by

g(b, c) = 5 +
bX

i=2

iX

j=0

(|P(i, b � i, j)||P(i, c � i, j)|).

Theorem 2.5. If c > b � 3, then g(b, c)  |F(K2,b,c)|.
Although the family sizes of complete multipartite graphs tend to stabilize, we’ve

encountered three types of graphs that do not follow this pattern. For these we pro-
pose instead estimates of the family sizes supported by computational observations.

Question 2.6. Does |F(Kn)| grow as

f (n) = 6
5(2⇡)3/2e(n�7)2/2?

Table 1 gives the estimated and actual values of |F(Kn)| for 8  n  12.

Question 2.7. Is 8
3 e3y/5 > |F(K3,y+3)| for y � 4?

Question 2.8. Is 16
3 e2c/3 < |F(K1,2,c+3)| for c � 1?
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In Section 3, we introduce some additional terminology and prove Theorem 2.2.
In Section 4, we prove our main theorem, Theorem 2.1. Section 5 is devoted
to the three families that do not appear to stabilize, including motivation for the
estimates given as part of our three questions. We prove Theorems 2.3, 2.4, and 2.5
in Section 6, where we also state a conjecture for multipartite graphs.

3. Families of tripartite graphs stabilize

Let Ka,b,c denote the complete a, b, c tripartite graph, where 1  a  b  c. Let
F1(G) denote the family of descendants of G, the graphs that can be obtained from
graph G by a sequence of rY moves, along with G itself. We call an element of
F1(G) a descendant of G. We argue that, with the exception of (a, b) = (1, 2), the
sizes of these families stabilize for c � ab. We conclude this section with a proof
of Theorem 2.2.

Let G = Ka,b,c and {A, B, C} be the partition of V (G) with |A| = a, |B| = b,
and |C | = c. The triangles of Ka,b,c are (v, w, x) with v 2 A, w 2 B, and x 2 C
and every such triple of vertices gives a triangle. Let H be the child of G born of
a rY move at (v, w, x). Then V (H) = V (G) [ {y}, where y is a degree-3 vertex
with neighborhood N (y) = {v, w, x}. We will refer to y as a trivial degree-3 vertex
since a Yr move at y simply recovers the graph G and reverses the rY move that
brought us to H in the first place. Since none of the edges of (v, w, x) remain in H,
y is not part of a triangle in H.

More generally, any descendant H of G is born of a sequence of rY moves at
edge-disjoint triangles (v1, w1, x1), . . . , (vn, wn, xn). These result in a sequence of
trivial vertices y1, . . . , yn , none of which are vertices of a triangle in H. Conversely,
rY moves at any set of edge-disjoint triangles in G produce one of its descendants.

Lemma 3.1. Let 1  a  b  c. If b > 3, then

|F1(Ka,b,c)| = |F(Ka,b,c)|.

Proof. The idea is that rY moves will produce only trivial degree-3 vertices; the
only Yr moves in this family simply reverse earlier rY moves.

The vertices of least degree are those in the C-part, of degree a + b. Let x 2 C .
A rY move on a triangle at x replaces two of its edges with one. This means that
rY moves can at most halve the degree of x . If a + b > 6, the degree of x will
never drop to 3. As the vertices in the A and B parts have even higher degree, the
only degree-3 vertices in a descendant of Ka,b,c are the trivial ones.

If a + b  6, we may assume a < 3. Again, we’ll argue that the only degree-3
vertices are trivial.

Suppose a = 1 and let v denote the unique vertex in that part of the graph. If
x is in B or C , then, in a descendant of Ka,b,c there is at most one rY move
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involving x and so the degree of x decreases by 1 at most. Since 3 < b  c, the
degree of x remains greater than 3 in the descendant. As for v, it starts with a
degree exceeding 6 and is at most halved by rY moves. So, the only degree-3
vertices in a descendant are trivial.

If a = 2, the argument is similar. As in the previous case, even after halving,
vertices v in the A-part have degree greater than 3. As for a vertex x in B or C ,
it can be involved in at most two triangles. But the degree of x is at least 6, so
removing two still leaves it above 3. ⇤
Theorem 3.2. Let 1  a  b. If c � ab, then

|F1(Ka,b,c)| = |F1(Ka,b,ab)|.
Proof. Let G = Ka,b,c with c � ab. As discussed above, any descendant H of G is
the result of a sequence of rY moves on edge-disjoint triangles, (v1, w1, x1), . . . ,
(vn, wn, xn), and the introduced degree-3 vertices y1, . . . , yn are not part of a
triangle in H. In other words, there is a correspondence between elements of
F1(G) and sequences (v1, w1, x1), . . . , (vn, wn, xn) of triangles in G.

As the triangles in such a sequence must be edge-disjoint, the maximum length n
of such a sequence is ab, the number of edges in the induced complete bipartite
graph Ka,b.

This leads to a bijection between the elements of F1(Ka,b,ab) and F1(G). If
H is a descendant of G, let (v1, w1, x1), . . . , (vn, wn, xn) be the associated se-
quence of edge-disjoint triangles. Extend the labeling of vertices of C so that
C = {x1, . . . , xn, xn+1, xn+2, . . . , xc}. By deleting vertices {xab+1, xab+2, . . . , xc}
we identify H with an element H 0 of F1(Ka,b,ab). Conversely, by adding ver-
tices xab+1, xab+2, . . . , xc, adjacent to each vertex in A and B, any graph H 0 2
F1(Ka,b,ab) becomes a H 2 F1(G). ⇤

Lemma 3.1 leaves open five cases, besides (1, 2). The following three lemmas
handle these remaining cases.

Lemma 3.3. Let 1  a  b  c and c � 4. Then |F(Ka,b,c)| = |F(Ka,b,d)| in the
case (a, b) 2 {(1, 1), (1, 3), (2, 2)}.
Proof. First, we consider (a, b) = (1, 1). Up to symmetry, there is only one triangle
in K1,1,c and applying the rY move leaves a graph that has only one degree-3
vertex, which is trivial. Thus |F(K1,1,c)| = |F(K1,1,4)| = 2.

Next, we deal with (a, b) = (1, 3). There are six graphs in F(K1,3,4), illustrated
schematically in Figure 2. Graphs at the same height have the same number of
vertices (they all have the same number of edges). We will argue that, if c � 4,
F(K1,3,c) has the same structure and the same size, 6.

Graph 1 in Figure 2 is K1,3,4, and the three graphs below it, 2, 3, and 5, round out
F1(K1,3,4). More precisely, in addition to K1,3,4 itself, there are three descendants
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Figure 2. The K1,3,4 family.

corresponding to the three edges in K1,3, the subgraph induced by the vertices in
parts A and B. Each of those three edges can be completed to a triangle using a
vertex of part C , and there are no other (edge-disjoint) triangles in K1,3,4. Thus
|F1(K1,3,4)| = 1 + 3 = 4.

However, the first rY on K1,3,4 produces a nontrivial degree-3 vertex. If
(v1,w1, x1) are the vertices of the triangle, then x1 becomes a degree-3 vertex
in graph 2. Making a Yr move at x1 produces graph 4. Up to symmetry, there’s
a unique triangle in graph 4 and the resulting graph 6 has no nontrivial degree-3
vertices.

The analysis above does not change for F(K1,3,c) if c � 4. There are still four
graphs in F1(K1,3,c), the first rY move on K1,3,c results in a nontrivial degree-3
vertex x1. Applying the rY at x1 produces a new graph that in turn admits a single
Yr move. For this reason, |F(K1,3,c)| = 6, as required.

It remains to treat the case where (a, b) = 2. For the remainder of this proof only,
let G = K2,2,4. We will proceed as in the family of K1,3,4 above, by describing the
family and then arguing that nothing changes when we add vertices to the C-part.
A triangle must include a vertex from parts A, B, and C . Let A = {v1, v2}, B =
{w1, w2}, and C = {x1, x2, x3, x4}. At most two triangles can involve v1 and at
most two triangles can involve v2. We will use an ordered pair to indicate this. For
example, G = G(2,1) indicates an element of the family where two rY moves have
been performed involving v1 and one rY triangle has been performed with v2. We
use superscripts to indicate that there are several ways to construct graphs with the
same subscript. For example, there are three, nonisomorphic, G(2,2) graphs.

Without loss of generality, the one or two triangles involving v1 will always
be {(v1, w1, x1)} or {(v1, w1, x1), (v1, w2, x2)}, respectively. Similarly, for the
triangles removed containing v2, the only ways to perform one or two rY moves,
up to symmetry, are summarized in Table 2.

Note that G3
(1,1) is isomorphic to G(2,0), so that these, along with G(0,0), G(1,0),

and G(2,0), give us ten graphs. We now argue that these ten graphs give us F1(G),
and that F1(G) = F(G). The family is depicted in Figure 3.
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graph triangles containing v2

G1
(1,1) (v2, w2, x1)

G2
(1,1) (v2, w2, x2)

G3
(1,1) (v2, w1, x2)

G1
(2,1) (v2, w2, x1)

G2
(2,1) (v2, w2, x2)

G1
(2,2) (v2, w2, x1), (v2, w1, x4)

G2
(2,2) (v2, w2, x2), (v2, w1, x3)

G3
(2,2) (v2, w2, x2), (v2, w1, x2)

Table 2. The family of K2,2,4.

G1
(1,1)

G1
(2,1)

G1
(2,2)

G(0,0)

G(1,0)

G(2,0)

G2
(2,1)

G2
(2,2)

G2
(1,1)

G3
(2,2)

Figure 3. The K2,2,c family.

The graphs G(0,0) and G(1,0) are the unique graphs with eight and nine vertices.
The three graphs with ten vertices are G1

(1,1), G2
(1,1), and G(2,0) (recalling that G3

(1,1)

is isomorphic to G(2,0)). Of these three graphs, G1
(1,1) is the unique one with a

vertex of degree 2 and G(2,0) is the unique one with a vertex of degree 6, so these
three graphs are nonisomorphic.

There are two graphs of degree 11, G1
(2,1) and G2

(2,1), but only G1
(2,1) has a vertex

of degree 2.
Finally, there are three graphs with twelve vertices, G1

(2,2), G2
(2,2), and G3

(2,2). Of
these, G2

(2,2) is the only one with a vertex of degree 2, while G1
(2,2) has five vertices

of degree 4 and G3
(2,2) has only four. This shows that |F1(G)| = 10.
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Figure 4. Subgraphs related to K3,3,9 (left to right): P9, H12, and H15.

We now show that F1(G) = F(G). Note that G(0,0), G(1,0), G(2,0), G1
(1,1), and

G1
(2,1) have no nontrivial degree-3 vertices. The graph G2

(1,1) has two nontrivial
degree-3 vertices, x1 and x4. Performing a Yr move on either yields G(1,0). Sim-
ilarly, for G2

(2,1), performing a Yr on x1 or x4 yields G(2,0) or G2
(1,1), respectively.

On G1
(2,2), we may perform a Yr move on either x3 or x4, which would result

in G1
(2,1) or G2

(2,1). For G2
(2,2), nontrivial degree-3 vertices are x1, x2, x3, and x4.

A Yr on any of them gives G2
(2,1). Finally, the nontrivial degree-3 vertices for

G3
(2,2) are x1, x4 and x2, and a Yr on any of them yields G2

(2,1). This gives that
F1(G) = F(G).

Similar to the K1,3,4 case, notice that nothing in this argument changes if we
replace G with K2,2,c for c > 4. ⇤
Lemma 3.4. If c � 9, then |F(K3,3,c)| = |F(K3,3,9)|.
Proof. We verify that |F(K3,3,9)| = 298 and |F1(K3,3,9)| = 237 with the aid of
a computer. By Theorem 3.2, for c � 9, |F1(K3,3,c)| = |F1(K3,3,9)| = 237. We
must show that the remaining 61 graphs of F(K3,3,9) can be identified uniquely
with those of F(K3,3,c) whenever c � 9.

For this, we note that there are three additional graphs in F(K3,3,9) that are Y-free;
they have no degree-3 vertices. We denote them as G17, G19, and G21, where the
subscript corresponds to the order (number of vertices, all graphs in the family have
size 63). In other words, F(K3,3,9) =F1(K3,3,9)[F1(G17)[F1(G19)[F1(G21).
Our strategy is to argue that there are analogous graphs Gc

17, Gc
19, and Gc

21 in
F(K3,3,c) (for c � 9) and that the bijection between F1(K3,3,9) and F1(K3,3,c)

extends to show the pairs F1(Gi ) and F1(Gc
i ), i = 17, 19, 21, are also in bijection.

For this, it will be important to keep track of how the C-part vertices appear
in each of the Y-free graphs. For example, eight of the C-part vertices of K3,3,9
survive in G17, each having degree 6. The induced graph on the remaining nine
vertices is P9, the graph on nine vertices in the Petersen family F(K1,3,3) (see
Figure 4). Indeed, if we ignore eight of the C-vertices of K3,3,9, what remains is
a K1,3,3. We can identify the sequence of rY and Yr moves as taking place in
F(K1,3,3), while the eight C-vertices maintain degree 6 throughout the sequence of
moves. The neighbors of the eight C vertices are the six vertices of degree 3 in P9.
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graph G part-C survivors |F1(G)|
G12 5 51
I12 4 29
G13 4 18
H13 4 19
I13 4 16
J13 4 4
G14 3 4

Table 3. Graphs in F(K2,3,6) \F1(K2,3,6) without degree-3 vertices.

Then, the analogue in F(K3,3,c), Gc
17, consists of a P9 along with c�1 additional

C-vertices of degree 6, each adjacent to the six degree-3 vertices of the P9. In
other words, for c � 9, there are at least eight C-vertices in Gc

17. As in the proof
of Theorem 3.2, to show that F1(G17) is in bijection with F1(Gc

17), it is enough
to observe that there are at most eight edge-disjoint triangles in G17 (or Gc

17) that
make use of C-vertices. In fact there are only six edges between degree-3 vertices
of P9, which is less than eight. Therefore, the bijection of Theorem 3.2 extends
and shows F1(G17) is in bijection with F1(Gc

17).
For graph G19, there are seven C-vertices, each of degree 6. The induced graph

H12 on the remaining 12 vertices has 21 edges and is shown in Figure 4. The seven
C-vertices are adjacent to each of the six degree-3 vertices in H12. To show that
F1(G19) is in bijection with F1(Gc

19), it is enough to observe that there are at most
seven edges in H12 between degree-3 vertices. In fact, there are only three.

Finally, for G21, six C-vertices remain, each of degree 6. The induced graph H15
(see Figure 4) on the other 15 vertices has 27 edges. The C-vertices are adjacent
to each of the six degree-3 vertices in H15. There are no longer any edges directly
connecting any pair of degree-3 vertices in H15, so we again have the required
bijection between the graphs of F1(G21) and F1(Gc

21). ⇤
Lemma 3.5. If c � 6, then |F(K2,3,c)| = |F(K2,3,6)|.
Proof. The idea is the same as in Lemma 3.4. With the aid of a computer, we
have that |F(K2,3,6)| = 97 and |F1(K2,3,6)| = 30 and so there are 67 graphs in
F(K2,3,6)\F1(K2,3,6). There are seven graphs in F(K2,3,6)\F1(K2,3,6) that have
no degree-3 vertices. A summary of the properties of these graphs is given in
Table 3. Subscripts indicate the number of vertices in the graph.

Since

F(K2,3,6) = F1(K2,3,6) [F1(G12) [F1(I12) [F1(G13)

[F1(H13) [F1(I13) [F1(J13) [F1(G14),
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Figure 5. Subgraphs related to K2,3,6. Top row (left to right): G12,
I12, G13, I13; bottom row (left to right): H13, J13, G14.

we will again argue that their are analogous graphs Xc for X 2 {G12, I12, G13, H13,

I13, J13, G14} such that the bijection between F1(K2,3,6) and F1(K2,3,c) for c � 6
extends to a bijection between F1(X) and F1(Xc) for X 2 {G12, I12, G13, H13, I13,

J13, G14}.
In the case of G12, five of the C-vertices of K2,3,6 survive in G12, each with

degree 5. Deleting these five vertices give us the subgraph in Figure 5. The
C-vertices are each adjacent to all of the vertices in this subgraph except the “top-
left” and “bottom-right” vertices of degree 4. Thus the analogue in F(K2,3,c), Gc

12,
consists of Figure 5 along with c�1 additional C-vertices, with the same adjacencies.
Since there are four edge-disjoint triangles involving C-vertices in either G12 or Gc

12,
the bijection in Theorem 3.2 extends to a bijection between F1(G12) and F1(Gc

12).
The other six cases are similar. The subgraphs resulting from removing the

C-vertices are depicted in Figure 5. ⇤
Proof of Theorem 2.2. Combining Lemma 3.1 with Theorem 3.2 establishes the
theorem for b > 3. Lemmas 3.3, 3.4, and 3.5 handle the remaining cases. ⇤

4. Families of multipartite graphs stabilize

It is straightforward to alter the arguments in the preceding section to multipartite
graphs. We do so now.

Lemma 4.1. Let 1  a1  · · ·  an and a1 + · · · + an�1 > 6. Then

|F1(Ka1,...,an )| = |F(Ka1,...,an )|.
Proof. The argument is identical to the proof of Lemma 3.1. Let G = Ka1,...,an

and A1, A2, . . . , An be a partition of V (G) with each |Ai | = ai . A rY move will
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produce only trivial degree-3 vertices. The vertices of least degree are those in An ,
which have degree a1 + · · ·+ an�1. Since rY moves can at most halve the degree
of a vertex in An and these have degree greater than 6, the only degree-3 vertices
in a descendant of Ka1,...,an are the trivial ones. ⇤

If there are at least seven parts, then the sum of the ai ’s will automatically
exceed 6. So the next lemma follows immediately from the last.

Lemma 4.2. Let 1  a1  · · ·  an and n > 6. Then

|F1(Ka1,...,an )| = |F(Ka1,...,an )|.
Theorem 4.3. Let 1  a1  · · ·  an and e = #E(Ka1,...,an�1). If an � e, then

|F1(Ka1,...,an )| = |F1(Ka1,...,an�1,e)|.
Proof. The proof is identical to Theorem 3.2. Every element of F1 is achieved
from Ka1,...,an by a series of m rY moves on edge-disjoint triangles. Let H 2 F1

be given by rY moves on disjoint triangles (↵1, �1, �1), . . . , (↵m, �m, �m). The
introduced degree-3 vertices y1, . . . , ym cannot be a part of a triangle in H, so
there is a bijection between sequences of triangles in Ka1,...,an and elements of
F1(Ka1,...,an ). Therefore the maximum length of such a sequence is given by
#E(Ka1,...,an�1).

We now provide injective maps between F1(Ka1,...,an�1,e) and F1(Ka1,...,an ). Let
H 2F1(Ka1,...,an ) and let x1, . . . , xm be the vertices from An appearing in its associ-
ated sequence of edge-disjoint triangles. Extend the labeling of vertices of An so that
An = {x1, x2, . . . , xm, xm+1, . . . , xan }. By deleting vertices {xe+1, xe+2, . . . , xan },
we identify H with an element of F1(Ka1,...,an ). It is clear that adding vertices to
an element of F1(Ka1,...,e) will give an element of F1(Ka1,...,an ). ⇤

Combining Lemma 4.1 and Theorem 4.3 gives our main theorem, Theorem 2.1.

5. Multipartite graph families that don’t stabilize

We have encountered four types of complete multipartite graph whose family sizes
do not appear to stabilize: Kn , K3,y , K1,2,c and K1,1,1,y . Since a single Yr move
on K3,y gives K1,1,1,y�1,

F(K3,y) = F(K1,1,1,y�1),

relating two of these four types and leaving three. In this section we motivate the
exponential growth estimates mentioned in the Introduction for these three types.

For Kn , the data we have collected is in Table 4. As with the other types of
graphs discussed in this section, there’s an anomalous maximum at a small value,
n = 5, after which the sizes show a steady increase for n � 6. Let Fv(Kn) be the
set of graphs in F(Kn) with exactly v vertices. A plot of |Fv(Kn)| for K11 and K12
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n 1 2 3 4 5 6 7 8 9 10 11 12

|F(Kn)| 1 1 2 2 49 7 20 32 163 1,681 56,461 5,002,315

Table 4. Sizes of complete graph families.
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Figure 6. Number of graphs with v vertices (|Fv(Kn)|) in family
of Kn , with curve-fit Gaussian.

is given in Figure 6. For Kn with n � 8, |Fv(Kn)| seems to be well-approximated
by the following Gaussian with mean 3n � 11 and standard deviation � = 1.5:

|Fv(Kn)| ⇡
� 8⇡

5 e(n�7)2/2�e�(x�(3n�11))2/2(1.5)2
.

This gives the estimate

f (n) = 6
5(2⇡)3/2e(n�7)2/2.

Table 5 shows our data for the bipartite graphs K3,y . The values seem to follow
the recursion

|F(K3,y+3)| ⇡ |F(K3,y)| + |F(K3,y+1)| + |F(K3,y+2)| for y � 4.
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y 1 2 3 4 5 6 7 8 9 10

|F(K3,y)| 2 2 10 6 10 17 29 52 94 172

y 11 12 13 14 15 16

|F(K3,y)| 315 578 1061 1941 3533 6408

Table 5. Sizes of families of bipartite graphs K3,y .

c 1 2 3 4 5 6 7 8 9 10

|F(K1,2,c)| 2 3 21 14 22 40 78 153 299 581

Table 6. Sizes of tripartite graphs K1,2,c.

If this pattern were to persist, we would get an estimate of the form |F(K3,y+3)| =
c1�

y
1 + c2�

y
2 + c3�

y
3 for constants ci , i = 1, 2, 3, where �i are the roots of x3 =

x2 + x +1. In modulus, the largest root is the real root, which is close to e0.61. This
suggests that |F(K3,y)| has a bound of the form ae0.61. Fitting the data for y � 4
to aeby gives a ⇡ 2.68, b ⇡ 0.599. Rounding b to 3

5 , we approximated a by 8
3 to

get the upper bound proposed in Question 2.7. We’ve verified that the proposed
inequality is valid for 4  y  13.

Table 6 displays our calculations for the final type of graph, K1,2,c. Similar to the
previous case, for c � 4, it appears that |F(K1,2,c+4)| is approximately the sum of
the previous four terms. Then, the size should grow exponentially with the largest
root of x4 = x3 + x2 + x + 1, which is a real root near e0.656. Fitting the data for
c � 4 to aeb gives a ⇡ 5.5 and b ⇡ 0.67. Rounding b to 2

3 , we approximated a by
16
3 to get the lower bound proposed in Question 3.

6. Precise bounds for simple families

In this section we prove three theorems that give precise calculations of size for
some simple families. We also state a conjecture.

Proof of Theorem 2.3. No rY or Yr moves are possible, so this is clear. ⇤

Proof of Theorem 2.4. Let G = K1,b,c, with vertices given by A = {v}, B =
{w1, . . . , wb}, and C = {x1, . . . , xc}. Since the minimum degree possible is 7, by
previous arguments, we need only consider sequences of edge-disjoint triangles
(v, w1, x1), . . . , (v, wn, xn) whose corresponding TY moves result in nonisomor-
phic graphs. Note that we must have wi 6= w j for i 6= j since each triangle must go
through v. Thus we have b sequences which result in distinct graphs. Adding in
K1,b,c itself gives the desired result. ⇤
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The following lower bound for the K2,b,c family is surprising in that the growth
of g(b, c) is quite close to the observed growth of |F(K2,b,c)| (discussed in more
detail below). Recall that P(x, y, z) is the set of partitions of z into two parts
bounded by x and y and

g(b, c) = 5 +
bX

i=2

iX

j=0

(|P(i, b � i, j)| · |P(i, c � i, j)|).

Proof of Theorem 2.5. The proof of Theorem 3.2 gives us a way to determine a
bound on the size of F(K2,b,c). We need a lower bound on the number of sequences
of edge-disjoint triangles in K2,b,c such that corresponding rY moves on these
sequences of disjoint triangles result in nonisomorphic graphs.

A triangle must have a vertex in parts A, B, and C . Let A = {v1, v2}. At most
b triangles can contain v1, and at most b triangles can contain v2.

The proof proceeds as follows: We first describe a method of choosing a sequence
of triangles on which we will perform rY moves. We identify each triangle in the
sequence with its vertices. Then, we argue that no two distinct such choices give
isomorphic graphs.

Suppose our sequence of n triangles is such that n = i + j with 2  i  b,
0  j  i , where i is the number of triangles involving v1. Fix a labeling of the
B- and C-vertices such that the i triangles with a v1-vertex are (v1, w↵, x↵) for
1  ↵  i . Partition B and C based on these choices. Define

B1 = {w1, . . . , wi }, B2 = {wi+1, . . . , wb},
C1 = {x1, . . . , xi }, C2 = {xi+1, . . . , xc}.

Thus B1 and C1 are the vertices in triangles including the v1-vertex.
Since n = i + j , we have j  i is the number of triangles in our sequence that

include vertex v2. For each of the j triangles involving v2, we must pick an element
of either B1 or B2 and an element of either C1 or C2. The number of ways to choose
j triangles in this way is given by |P(i, b � i, j)| · |P(i, c � i, j)|. We’ll assume
i � 2, so that there remain enough edges between B1 and C1 to form the j triangles
on v2. Indeed, there are i2 edges between B1 and C1 and i of them are used for the
triangles containing v1. Assuming i � 2, there remain i2 � i � i � j edges. It’s
easy to check that there’s one way to form a graph when i = 0 and four for i = 1.

Define G = G(s, t) to be the graph obtained by performing rY moves on the
n = i + j triangles, parametrized by s and t as follows: Our sequence of edge-
disjoint triangles includes the i triangles (v1, w↵, x↵) for 1↵ i and the j triangles
{(v2, w�1, x�1), . . . , (v2, w� j , x� j )}, where w�1, . . . , w�s 2 B1, w�s+1, . . . , w� j 2 B2
and similarly x�1, . . . , x�t 2 C1, x�t+1, . . . , x� j 2 C2 with 0  s, t  j . If s = 0, then
all w� vertices are in B2 and similarly for t = 0.
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To identify whether or not two such graphs might be isomorphic, let’s identify
the degrees of the vertices in G(s, t). In K2,b,c there are two vertices of degree b+c,
b of degree c + 2, and c of b + 2. After the i rY moves on triangles with a v1-
vertex, v2 still has degree b + c, v1 will have degree b + c � i , there are i in B1 of
degree c + 1 and the remaining b � i vertices in B2 are of degree c + 2. Similarly,
the i vertices of C1 have degree b + 1 and the c � i vertices in C2 remain at b + 2.
Finally, we have added i degree-3 vertices. After a further j rY moves, G(s, t) has
the following degrees and counts: one of degree b + c � i , one of degree b + c � j ,
s of c, i + j � 2s of c + 1, b + s � i � j of c + 2, t of b, i + j � 2t of b + 1,
c + t � i � j of b + 2, and i + j vertices of degree 3.

We will argue that two such graphs G1 = G(s1, t1) and G2 = G(s2, t2) can be
isomorphic only if (i1, j1, s1, t1) = (i2, j2, s2, t2); the four constants must agree.
We note that the theorem holds if b = 3 as illustrated by Tables 7 and 8 below. Both
g(3, c) and |F(K2,3,c)| stabilize for c � 6, so it is enough to verify the result for
4  c  6. So, we will assume b > 3. Counting the vertices of degree 3 we have
i1 + j1 = i2 + j2 and the vertices of degree b show that t1 = t2. We can identify
v1 and v2 as the two vertices that, between them, are adjacent to all the degree-3
vertices. Comparing the degrees of v1 and v2, since j  i (if i = j , then they are
interchangeable), we can identify the i’s and j’s, which shows i1 = i2 and j1 = j2.

It remains to argue s1 = s2. Ordinarily, this can be done by comparing the vertices
of degree c. However, there may be additional vertices of degree c beyond the s
that we expect. For example, if c = b + 1, we would have s + i + j � 2t vertices of
degree c. Since we’ve already shown the other three constants agree, comparing
the vertices of degree c still will give us the required s1 = s2. Similarly if c = b +2,
the additional c + t � i � j vertices of degree c cause no problem as we’ve already
established that this number is the same for both graphs. It may be that v1 or v2
have degree c, but we’ve discussed how to identify these vertices and, for the graphs
to be isomorphic, their degrees must agree in G1 and G2. ⇤

Data for both |F(K2,x,y)| and g(x, y) is given in Tables 7 and 8, respectively.
Based on the table values, it appears that g(x, 2x) = g(x, 2x � 1) + 1, which
corresponds to the pattern |F(K2,x,2x)| = |F(K2,x,2x�1)| + 1 that we observe for
3  x  6 (and conjecture for greater x , see below). The growth patterns of the two
functions are similar in many respects. For example, we have shown in Theorem 3.2
that the size of the graph family of K2,x,y stabilizes at K2,x,2x and, in Table 8,
g(x, y) shows a similar stabilization.

We conclude this section with a conjecture.

Conjecture 6.3. Let n � 3, 1  a1  · · ·  an , and e = #E(Ka1,...,an�1). If
a1 + · · · + an�1 > 6 and an � e, then

|F(Ka1,...,an�1,e�1)| = |F(Ka1,...,an�1,an )| � 1.
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x
y

4 5 6 7 8 9 10 11 12

3 93 96 97 97 97 97 97 97 97
4 43 70 78 80 81 81 81 81 81
5 70 96 166 184 192 194 195 195 195
6 78 166 215 380 428 447 455 457 458
7 80 184 380 450 827 931 981 1000 1008

Table 7. |F(K2,x,y)|.

x
y

4 5 6 7 8 9 10 11 12

3 23 25 26 26 26 26 26 26 26
4 37 45 50 52 53 53 53 53 53
5 45 65 79 87 92 94 95 95 95
6 50 79 109 129 143 151 156 158 159
7 52 87 129 169 199 219 233 241 246

Table 8. g(x, y).

The conjecture is supported by experimental data for some tripartite graphs.
Note that for Ka,b,c, with a  b  c, we have e = ab. Using Theorem 2.4, it is
straightforward to verify the conjecture for triples 1, b, c.

Theorem 6.4. If 6  b  c, then |F(K1,b,b�1)| = |F(K1,b,c)| � 1.

Proof. By Theorem 2.4, |F(1, b, c)|= 1+b. We must show that |F(1, b, b�1)|= b.
If b > 6, the same theorem shows |F(1, b, b � 1)| = |F(1, b � 1, b)| = b, as
required. All that remains is the easy verification that, when b = 6, |F(1, 6, 5)| =
|F(1, 5, 6)| = 6. ⇤

In addition to the triples covered by the theorem above, Table 7 shows the
conjecture also holds for (a, b) 2 {(2, 3), (2, 4), (2, 5), (2, 6)}. Using a computer,
we have also verified the case (a, b) = (3, 4).
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