
COMPUTING COSET REPRESENTATIVES AND GENERATORS
OF Γ0(3, N)

ZACHARY PORAT

1. Introduction

Recall that in the case of classical modular forms, for N ∈ Z+, we define the
principal congruence subgroup Γ(2, N) to be

Γ(2, N) = {γ ∈ SL(2,Z) : γ ≡ I (mod N)}.

We call a subgroup Γ ∈ SL(2,Z) a congruence subgroup if Γ contains Γ(N) for
some N . We call the smallest such N the level.

The principal congruence subgroup has finite index in SL(2,Z). In fact, every
congruence subgroup has finite index in SL(2,Z). Aside from Γ(2, N), perhaps the
next most important congruence subgroup is the Hecke congruence subgroup,
denoted Γ0(2, N). This subgroup is defined as

Γ0(2, N) =

γ ∈ SL(2,Z) : γ ≡
∗ ∗

0 ∗

 (mod N)

 .

[AGG84] constructed an analogous subgroup of SL(n,Z) with n ≥ 3. In particular,
for the n = 3 case, we have

Γ0(3, N) =

γ ∈ SL(3,Z) : γ ≡


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

 (mod N)

 .

Given the importance of Γ0(2, N), computer algebra systems like SageMath have
built-in functionality to compute its generators. However, these programs do not
have predefined functions to compute generators of the less-studied Γ0(3, N). In these
notes, we describe a SageMath program that uses a finite presentation of SL(3,Z)
and the Reidemeister-Schreier method to produce the generators of Γ0(3, N).

2. The Reidemeister-Schreier Method

Let G be a group and let H be a subgroup of G. The Reidemeister-Schreier method
allows us to produce a presentation of H from a presentation of G. In particular, if

1



2 ZACHARY PORAT

G is finitely presented, so too is H. This presentation will provide a (finite) set of
generators for H.

For our purposes, we will let SL(3,Z) be the overlying group, and Γ0(3, N) will
be the subgroup of interest. Our goal is to use the Reidemeister-Schreier method to
construct a set of generators for Γ0(3, N). Thus, we need to start with a presentation
of SL(3,Z), which can be found in [CRW92].

Theorem 2.1. The group SL(3,Z) has presentation

G = 〈x, y, z | x3 = y3 = z2 = (xz)3 = (yz)3 = (x−1zxy)2 = (y−1zyx)2 = (xy)6 = 1〉.

Moreover, G is isomorphic to SL(3,Z) via the mappings

x =


0 1 0
0 0 1
1 0 0

 , y =


1 0 1
0 −1 −1
0 1 0

 , z =


0 1 0
1 0 0
−1 −1 −1

 .

Now, we will use G to produce a finite presentation of H ≤ G where H ∼= Γ0(3, N)
using the isomorphism above. Let S denote the set of three generators and let F (S)
denote the free group on S. We make the following definitions invoking the notation
of [Knu17]. Another helpful resource on the subject is [Cas17].

Definition 2.2. A set A = {g`}`∈F (S)\H of (right) coset representatives is a Schreier
set for H if, after writing each g` as a reduced word in S, every initial subword of
g` is again an element of A. Moreover, a Schreier transversal is a Schreier set
containing exactly one element from each right coset.

Remark. For g ∈ F (S), let g denote the representative of g in F (S)\H as viewed in
F (S). That is, the composite map F (S)→ F (S)\H ∼= A→ F (S) takes g 7→ g.

Theorem 2.3. Let H ≤ F (S) be a subgroup and let A a Schreier set for H. Then,
the nontrivial elements of the form g`s(g`s)−1 for ` ∈ F (S)\H and s ∈ S freely
generate H.

The goal of our code is to build a list of elements of the form g`s(g`s)−1 and
then transport these elements back along the isomorphism to produce actual matrix
generators for Γ0(3, N). During this process, a Schreier transversal will be constructed
and stored. In the end, this program has two possible outputs: one that behaves
similarly to the built-in Gamma0.coset_reps() command available in SageMath for
Γ0(2, N), and another that behaves like the Gamma0.gens() command.



COMPUTING COSET REPRESENTATIVES AND GENERATORS OF Γ0(3, N) 3

3. Explanation of Code

Currently, this code only supports prime level N . To use, load the program by
opening SageMath in the same directory as the downloaded file and invoking the
command load("Gamma0_3_Data.py"). (If the file was renamed after its download,
replace Gamma0_3_Data.py with the appropriate file name.)

The program contains two commands. The command Gamma0_3_coset_reps(N)
returns a set of coset representatives for Γ0(3, N) for any prime N input by the user.
The command Gamma0_3_gens(N) returns a set of generators for Γ0(3, N). If the user
chooses an N that is not prime, the program will return an error.

The code is broken down into various blocks. A brief description of what each block
does can be found below.

Block 1. In this block, the user sets the level of the modular form N and computes
the index of Γ0(3, N) in SL(3,Z). Additionally, the set of generators S is built and
the free group F (S) is constructed. An element w ∈ F (S) can be passed along the
isomorphism to SL(3,Z) by using the command w(M1, M2, M3), where

M1 =


0 1 0
0 0 1
1 0 0

 , M2 =


1 0 1
0 −1 −1
0 1 0

 , M3 =


0 1 0
1 0 0
−1 −1 −1

 .

Finally, a list of length one words in F (S) is made, denote this list L1, and the Schreier
set A is initialized with one element, the word x, written in Tietze notation.

Block 2. For each w ∈ L1, this block checks if w is already represented in A. Let a
be a coset representative in A. To check if w is in the same coset as a, we first send
w and a through the isomorphism, getting matrices Mw and Ma corresponding to w
and a respectively. Then, we examine if the matrix product MwM

−1
a is in Γ0(3, N),

i.e. if

MwM
−1
a ≡


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

 (mod N).

If w is in a coset already represented in A, then w is discarded. Otherwise, w repre-
sents a new coset and is added to A.

Remark. In future blocks, when we are checking whether a new word is already
represented in A, this is the process being performed.

https://doc.sagemath.org/html/en/reference/groups/sage/groups/finitely_presented.html#sage.groups.finitely_presented.FinitelyPresentedGroupElement.Tietze


4 ZACHARY PORAT

Block 3. The first step in this block is to check whether the size of A is equal to the
index of Γ0(3, N). If so, then the construction of A is complete and the program goes
to Block 5.

Let Li denote the list of length i words in A. We start with i = 1 from Block 2.
For efficiency, we need only build words that start with the length i words already in
A; this ensures initial segment closure. We build the potential words of length i + 1
by taking each word in Li and concatenating by each generator in S. Let Li+1 denote
this set of potential words with length i+ 1.

Block 4. For each w ∈ Li+1, we check whether w is in same coset as any represen-
tative in A. If so, we discard w. Otherwise, we append w to A. We then return to
Block 3, iterating on i.

Recall that in order for a word w to be in a Schreier set A, the word must be
closed under initial segments. That is, every initial subword of w must also be in A.
Therefore, the maximum length of word possible in A is [SL(3,Z) : Γ0(3, N)]. Thus,
the number of times the following process of building words can be repeated is capped
when the word length i equals this index.

At the completion of this iteration, the resulting set A is a Schreier transveral. This
is the point in the code where the command Gamma0_3_coset_reps(N) terminates
and returns A, which is a set of coset representatives for Γ0(3, N).

Block 5. In this block, each word g` in A is concatenated by each generator in S

on the right. The result is words of the form g`s. We then find g`s, i.e. check which
coset in A represents this new word. Next, we compute (g`s)−1 and finally construct
a potential generator g`s(g`s)−1. We append these potential generators to a list.

Block 6. The final block converts the potential generators from Tietze notation to
elements of F (S), and then passes them along the isomorphism. The identity matrix
is also removed in this step. The block finishes by finding the unique matrix generators
from the list and formatting them appropriately.

4. Potential Improvements

Mathematically, this process is not very fast in returning a set of generators, nor
will it return a minimal generating set. SageMath currently uses Farey symbols to
compute a minimal generating set for Γ0(2, N). Using a similar method would allow
us to do the same in our case. As for the speed of the program, storing less information
or performing smaller calculations would yield faster run times. One way to do this is



COMPUTING COSET REPRESENTATIVES AND GENERATORS OF Γ0(3, N) 5

by computing only the first column of the test matrix, as this is all the data required
to check whether a potential element is already represented in A.

References

[AGG84] A. Ash, D. Grayson, and P. Green, Computations of cuspidal cohomology of congruence
subgroups of SL(3, Z), J. Number Theory 19 (1984), no. 3, 412–436. (MR769792)

[Cas17] L. Casey, Reidemeister-Schreier rewriting process for group presentations, Master’s Thesis,
Portland State University, 2017. (Link)

[CRW92] M. Conder, E. Robertson, and P. Williams, Presentations for 3-dimensional special linear
groups over integer rings, Proc. Amer. Math. Soc. 115 (1992), no. 1, 19–26. (MR1079696)

[Knu17] B. Knudsen, Configuration spaces in algebraic topology: Lecture 4, 2017. (Link)

https://mathscinet.ams.org/mathscinet-getitem?mr=MR769792
https://web.pdx.edu/~caughman/Casey501.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1079696
https://scholar.harvard.edu/files/knudsen/files/lecture_4.pdf

	1. Introduction
	2. The Reidemeister-Schreier Method
	3. Explanation of Code
	Block 1
	Block 2
	Block 3
	Block 4
	Block 5
	Block 6

	4. Potential Improvements
	References

